Palladium-Catalyzed Cascade Reactions of 1-(3-Arylprop-2-ynyloxy)-2-bromo Benzene Derivatives with Organoboron Compounds

Antonio Arcadi,^{*,†} Federico Blesi,[†] Sandro Cacchi,[‡] Giancarlo Fabrizi,^{*,‡} Antonella Goggiamani,[‡] and Fabio Marinelli[†]

[†]Dipartimento di Scienze Fisiche e Chimiche, Università di L'Aquila, Via Vetoio, 67010, Coppito (AQ), Italy

[‡]Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy

Supporting Information

ABSTRACT: Applications of the cascade cyclocarbopalladation reaction followed by Suzuki–Miyaura coupling reactions of the readily available aryl-substituted propargylic aryl ethers with arylboronic acid and potassium *trans-* β -styryltrifluoroborate accomplish a new versatile entry in the synthesis of benzofuran derivatives. Notably, a new approach to the challenging synthesis of C3 functionalized 2-unsubstituted benzofurans has been developed by a cyclocarbopalladation/ cross-coupling/aromatization process.

INTRODUCTION

The synthesis of highly functionalized polycyclic compounds has been greatly advanced by the development of cascade reactions catalyzed by transition metals.¹ By triggering such cascade events with well-defined functionalities in the structure of the starting material, these reactions have become a major tool for organic chemists to build up more complex molecules in a minimum number of steps. The main challenge in organic synthesis is the preparation of target products in a more efficient and economical manner, which will enable the use of more sophisticated structures in industry and academia. In this respect especially step economy is an important factor, since accessibility highly depends on the amount of steps required to reach the desired compounds.² The generally well understood reactivity of palladium has allowed the discovery of many intriguing novel cascade processes achieving relevant developments in this field, particularly on the generation of diverse poly- and heterocyclic scaffolds.³ Carbometalations of alkynes constitute an unconventional way to create, often in a regioand stereoselective manner, carbon-carbon bonds.⁴ Intramolecular palladium-catalyzed versions are particularly attractive, for they afford polycarbo- and heterocyclic systems that can be further functionalized from the intermediate vinylpalladium.⁵ In this field, a variety of palladium-catalyzed domino sequences consisting of addition of in situ generated arylpalladium complexes over a proximate carbon-carbon triple bond/cross coupling reactions giving final products via regio- and stereselective 5-exo-dig and 6-exo-dig cyclization processes have been reported.⁶ Cascade cyclocarbopalladation reaction followed by Suzuki-Miyaura coupling also achieved the synthesis of seven-membered dibenzoxapine derivatives

with a stereodefined exocyclic double bond.⁷ Moreover, 4-exodig cyclocarbopalladation reactions followed by a Suzuki– Miyaura or Sonogashira cross-coupling have been explored.⁸ Our continuing interest⁹ on the palladium-catalyzed reaction of alkynes with boronic acids directed toward the development of new synthetic approaches to the construction of fused heterocycles prompts us to explore the palladium-catalyzed reaction of 1-(3-arylprop-2-ynyloxy)-2-bromo benzene derivatives **1** with organoboron compounds **2** as viable route to the synthesis of C3 functionalized benzofurans (Scheme 1).

The generality, scope and limitations, as well as the product selectivity in the cascade cyclocarbopalladation reaction followed by Suzuki–Miyaura coupling or cyclocarbopalladation/cross coupling/aromatization reactions of readily available aryl-substituted propargylic aryl ethers 1 has not been previously investigated. Applications of this key reaction can be relevant in the synthesis of new *O*-heterocycles. Usually, different types of substitution patterns in these heterocycles provide new opportunities for drug discoveries and by a fine-tuning of their physical properties for applications in material science.¹⁰ For their potential applications, development of novel synthetic strategies is in strong demand.

RESULTS AND DISCUSSION

Ethers 1a-i were prepared in moderate to high yields through a selective Sonogashira cross-coupling of 1-bromo-2-prop-2ynyloxy)benzene derivatives with a range of aryl iodides (Table 1).¹¹ We hypothesized that the presence of the C–Br bond

 Received:
 March 8, 2013

 Published:
 April 11, 2013

Scheme 1

 Table 1. Synthesis of 1-(3-Arylprop-2-ynyloxy)-2-bromo

 Benzene Derivatives 1

"Reactions were carried out on 4.44 mmol scale in DMF (3 mL)/diisopropylamine (6 mL) at rt, using 1 equiv of 2-bromo-1-(prop-2ynyloxy)benzene derivative, 0.02 equiv of $PdCl_2(PPh_3)_2$, 0.04 equiv of CuI and 1.3 equiv of aryl iodide. ^bIf not otherwise stated, yields refer to single run and are for pure isolated products.

would be an invaluable handle for directing site selectivity and greatly expanding the breadth of potential target compounds that might be accessible by palladium-catalyzed cross-coupling reactions.¹²

Subsequent studies were directed toward searching for the best conditions for their cyclocarbopalladation/Suzuki–Miyaura couplings.^{3a} Interestingly, the simple commercially available $PdCl_2(PPh_3)_2$ achieved the high stereoselective synthesis of **3a** in good yield. The choice of $PdCl_2(PPh_3)_2$ as the most suitable catalyst was shown by comparison with $Pd_2(dba)_3$ /S-Phos catalytic system, which was previously

Scheme 2

reported as very effective in promoting Suzuki–Miyaura cross-coupling of the less reactive heteroaryl halides (Scheme 2).¹² The formation of undesired direct coupling products was not observed.

The formation of the stereoisomer **3a** would be derived by the intramolecular *syn* addition over the C–C triple bond of the in situ generated arylpalladium(II) **A**, which provides alkenylpalladium complex **B**. Next, transmetalation with the arylboronic acid in the presence of K_3PO_4 would lead to intermediate **C**. The reductive elimination of palladium from species **C** affords **3a** and regenerates the palladium(0) species (Scheme 3).

Subsequently, this method was applied to the stereoselective synthesis of a variety of 2,3-dihydro-3-(diarylmethylene)benzofurans 3. We explored the scope and the generality of the tandem palladium-catalyzed cyclocarbopalladation reaction/Suzuki–Miyaura reaction in terms of rings substitution on both substrates 1 and arylboronic acids 2. Both electronwithdrawing and -donating groups did not have much influence on the yield of the reaction. Table 2 shows our results. By using the $PdCl_2(PPh_3)_2$ (2 mol %) in 1,4-dioxane in the presence of

Table 2. Synthesis of Disubstituted 3-Methylene-2,3-dihydrobenzofurans 3

	۵	.r			R ²	
R ¹	, Br │	"B(OH) ₂	PdCl ₂ (PPh ₃) ₂	R ¹	Ar	
		+	1,4-dioxane, 100 °C			
•	0	R^2	K₂PO₄		° 0	
		_			2	
1		2			3	
entry ^a	\mathbb{R}^1	Ar	\mathbb{R}^2	time (h)	3 (yield %) ^{b}	
1	Me	4-MeO-C ₆ H ₄	H (2a)	2	3a (77)	
2	Me	4-MeO-C ₆ H ₄	4-MeO (2b)	1	3b (74)	
3	Me	4-MeO-C ₆ H ₄	$4-MeO_2C$ (2c)	1	3c (55)	
4	Me	4-MeO-C ₆ H ₄	3-MeO ₂ C (2d)	1	3d (70)	
5	Me	4-MeO-C ₆ H ₄	3-CHO (2e)	1	3e (45)	
6	Me	4-MeCO-C ₆ H ₄	Н	1	3f (83)	
7	Me	4-MeCO-C ₆ H ₄	4-MeO	2	3g (88)	
8	Me	4-MeCO-C ₆ H ₄	4-MeO ₂ C	2	3h (80)	
9	Me	4-MeCO-C ₆ H ₄	3-MeO ₂ C	2	3i (83)	
10	Me	4-MeCO-C ₆ H ₄	3-CHO	2	3j (72)	
11	Me	Ph	Н	2	3k (99)	
12	Me	Ph	4-MeO	1	3l (82)	
13	Me	Ph	3-MeO ₂ C	3	3m (52)	
14	F	Ph	4-MeO ₂ C	1	3n (81)	
15	F	Ph	3-MeO ₂ C	2	30 (86)	
16	F	Ph	4-MeO	2	3p (85)	
17	F	4-MeCO-C ₆ H ₄	4-MeO ₂ C	2	3q (82)	
18	F	4-MeCO-C ₆ H ₄	Н	2	3r (90)	
19	F	4-MeO-C ₆ H ₄	4-MeO ₂ C	2	3s (76)	
22	F	4-MeO-C ₆ H ₄	Н	2	3t (79)	
23	Ph	4-MeCO-C ₆ H ₄	Н	3	3u (55)	
24	Ph	4-MeCO-C ₆ H ₄	4-MeO ₂ C	2	3v (75)	
26	Ph	Ph	Н	8	3w (67)	
27	Ph	Ph	4-MeO ₂ C	2	3x (64)	
29	Ph	4-MeO-C ₆ H ₄	4-MeO ₂ C	2	3y (53)	
30	Ph	4-MeO-C ₆ H ₄	Н	5	3z (45)	

^{*a*}Reactions were carried out on 0.30 mmol scale in 1,4-dioxane (2 mL) at 100 °C, using 1 equiv of 1, 0.02 equiv of $PdCl_2(PPh_3)_2$, 3 equiv of K_3PO_4 and 1.5 equiv of 2. ^{*b*}If not otherwise stated, yields refer to single run and are for pure isolated products.

 K_3PO_4 (3 equiv), the tandem palladium-catalyzed cyclocarbopalladation reaction/Suzuki–Miyaura reaction of derivatives 1a-i was quite general and proceeded smoothly at 100 °C to give exclusively the corresponding disubstituted 3-methylene-2,3-dihydrobenzofurans 3a-z in moderate to excellent yields. The presence of the methyl, the phenyl, and the F group as a substituent onto the aromatic ring attached to the oxygen moiety was compatible with the procedure. The stereochemistry of compounds 3 was unambiguously confirmed by NMR spectroscopy.¹³ Boron-mediated cleaving of aryl propargyl ethers was also not observed.¹⁴

In absolute agreement with previous results, 4-fluoro-3methylboronic acid 2f was exclusively converted to the corresponding 3-((4-fluoro-3-methyl)-phenyl)-2,3-dihydrobenzofuran derivatives 5a-e (Table 3). The inclusion of fluorine into a host of organic substrates has been shown to affect the activity of the drug in vivo and has resulted in a large number of viable drug candidates.¹⁵ In that respect, there is a growing demand for synthetic methods for the preparation of selectively Article

^{*a*}Reactions were carried out on 0.30 mmol scale in 1,4-dioxane (2 mL) at 100 °C, using 1 equiv of 1, 0.02 equiv of $PdCl_2(PPh_3)_2$, 3 equiv of K_3PO_4 and 1.5 equiv of 2f. ^{*b*}If not otherwise stated, yields refer to single run and are for pure isolated products.

fluorinated heterocyclic compounds for use in pharmaceutical and agrochemical industry. 16

The extension of the procedure to vinyl organoboron derivatives was briefly explored. The palladium-catalyzed reaction of **1b** with the potassium *trans-* β -styryltrifluoroborate **2g** was also highly stereoselective, leading to the formation of the 1-(4-((1*E*,2*E*)-1-(5-methylbenzofuran-3(2*H*)-ylidene-3-phenylallyl)phenyl) ethanone **6**, albeit in lower yield (Scheme 4).

It is worth noting that many examples of isomerization of the primary *syn*-adduct to the *anti*-adduct in the carbopalladation step of alkynes have been reported, and the observed stereochemistry deviated from the expected Pd-mediated *syn*-insertion of triple bonds.^{5,17} Moreover, the substituents on the arylpropargyl ethers have been reported to exhibit a great influence on the stereocontrol of the intramolecular carbometalation,¹⁸ and with the phenyl-substituted substrate 7, a postcarbometalation isomerization was reported to occur (Scheme 5).¹⁹

The 3-methylene-2,3-dihydrobenzofurans have been reported to tend to aromatize into the corresponding 2-unsubstituted benzofurans.^{19,20} Our screening for the best reaction conditions for the aromatization of compounds 3 to the corresponding C3 functionalized 2-unsubstituted benzofurans 8 showed that the process can occur under basic conditions (Table 4). While the aromatization reaction failed in 1,4-dioxane under the presence of potassium phosphate tribasic even at higher temperature (Table 4, entries 4, 5), significant increase in the yield of 8a was observed with highly polar solvents other than 1,4-dioxane, such as *N*,*N*-dimethylforma-

7 [bmim]BF₄ K_3PO_4 100 24 65 ^aYields refer to single run and are for pure isolated compound **8a**. mide (Table 4, entry 6). Interestingly the aromatization was also observed in the ionic liquid [bmim]BF₄ as the reaction medium (Table 4, entry 7).²¹ Ionic liquids represent a class of alternative solvents that are currently receiving serious

consideration because of their environmental and technological

benefits.22 Having successfully established the suitable conditions for the aromatization of derivative 3a, we examined the versatility of the preparation of the target C3 funtionalized-2-unsubstituted benzofurans 8a through a one-pot procedure. We explored the one-pot cyclocarbopalladation/cross coupling/ aromatization reactions of 1 as a suitable tool for the synthesis of C3 functionalized 2-unsubstituted benzofurans. Procedures for the synthesis of these derivatives remained scarcely described in the literature, and the development of simple and general methods for their preparation is a subject of great interest.²³ Subsequently, we found that 8a (Table 5, entry 1) could be conveniently prepared through a process in which, after extraction and evaporation of the of the mixture resulting from the reaction of 1a with 2a carried out for 7 h in 1,4dioxane at 100 °C in the presence of K_3PO_4 and $Pd(Cl_2)$ - $(PPh_3)_2$, DMF was added to the crude, which was heated at 100 °C for further 2 h. Using this procedure (procedure A), 8a was isolated in a slightly higher overall yield (65%) than that obtained via the stepwise protocol (56%). To simplify further the synthetic protocol by avoiding the workup step, we attempted to optimize reaction conditions for a domino process by using the same substrates as a model system. The screening of solvents and temperature reaction showed that best results

Table 5. Synthesis of 2-Unsubstituted Benzofurans 8

R ¹		ur + (HO) ₂ B		edure A or edure B R ¹	Ar	$\mathbb{A}^{\mathbb{R}^2}$
	1	2			8	
entry	\mathbb{R}^1	Ar	R ²	procedure	time (h)	8 (yield %) a
1	Me	4-MeO- C ₆ H ₄	Н	А	9	8a (65)
2	Me	4-MeO- C ₆ H ₄	Н	В	9	8a (51)
3	Me	4-MeO- C ₆ H ₄	Н	B^{b}	24	8a (48)
3	Me	C ₆ H ₅	Н	А	6	8b (73)
4	Me	C ₆ H ₅	Н	В	3	8b (51)
5	Me	4-MeCO- C ₆ H ₄	Н	Α	3	8c (72)
6	Me	4-MeCO- C ₆ H ₄	Н	В	2	8c (-)
7	Me	4-MeO- C ₆ H ₄	3-MeOCO- C ₆ H ₄	А	4.5	8d (55)
8	Me	4-MeO- C ₆ H ₄	3-MeOCO- C ₆ H ₄	В	2.5	8d (30)
9	F	4-MeO- C ₆ H ₄	Н	А	6	8e (90)
10	F	4-MeO- C ₆ H ₄	Н	В	5	8e (-)
arr. 11	~		1 6			

^aYields refer to single run and are for pure isolated compounds 8. ^bReaction temperature =120 $^{\circ}$ C.

were observed in dimethyl sulfoxide at 100 °C (Table 5, entry 2) (procedure B). No improvements were observed with our model system even with prolonged reaction times or increasing the temperature (Table 5, entry 3). The two different procedures A and B were extended to include other substrates. While the procedure A appeared of general application, the procedure B was find to give satisfactory results in some cases (Table 5, entries 2,4, 8) but to be ineffective in others (Table 5, entries 6, 10). Very likely, under the presence of the palladium catalyst, the in situ generation of a palladium(II) π -allyl complex^{20a} from 3 should cause the formation of side products determining the ineffectiveness of the aromatization process.

CONCLUSIONS

The generality, scope and limitations, as well as the product selectivity in the palladium-catalyzed tandem carbocyclization/ Suzuki coupling of the readily available 1-(3-arylprop-2ynyloxy)-2-bromo benzene derivatives have been investigated. The reactions take place in the presence of $PdCl_2(PPh_3)_2$ and potassium phosphate in 1,4-dioxane as the solvent at 100 °C. Various 1-(3-arylprop-2-ynyloxy)-2-bromo benzene derivatives underwent the palladium-catalyzed cascade reaction with several arylboronic acids to afford, highly stereoselectively, the corresponding 2,3-dihydro-3-(diarylmethylene)-benzofurans in moderate to excellent yields. The stereochemistry of these products derives from the exclusive Pd-mediated syn-insertion of triple bond. The application of the procedure to the potassium *trans-\beta-styryltrifluoroborate* has been also shown. An efficient method for the synthesis of the scarcely described C3 functionalized 2-unsubstituted benzofurans has been developed, providing a versatile tool for further expansion of their utility such as the random screening in the search for drug candidates.

EXPERIMENTAL SECTION

General Methods. ¹H and ¹³C NMR spectra were recorded at 400 and 100.6 MHz, respectively. IR spectra were recorded in KBr pellets or neat in NaCl on a FT-IR spectrometer. Only the most significant IR absorptions are given. Melting points were determined on a microscope apparatus and were uncorrected. High resolution mass spectra were recorded on Q-TOF. Unless otherwise stated, all starting materials, catalysts, and solvents were commercially available and were used as purchased. Reaction products were purified by flash chromatography on silica gel by elution with *n*-hexane/EtOAc mixtures.

General Experimental Procedure for the Synthesis of 2-Bromo-O-aryl-prop-2-ynyl)phenols (1). Synthesis of 2-Bromo-1-(3-(4-methoxyphenyl)prop-2-ynyloxy)-4-methylbenzene (1a). A solution of 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene (1 g, 4.44 mmol, 1 equiv), $PdCl_2(PPh_3)_2$ (0.062 g, 0.09 mmol, 0.02 equiv) and CuI (0.034 g, 0.18 mmol, 0.04 equiv) in DMF (3 mL)/diisopropylamine (6 mL) was treated with 4-iodoanisole (1.350 g, 5.77 mmol, 1.3 equiv). The resulting solution was stirred at room temperature for 1 h until determined to be complete by TLC. The crude reaction mixture was poured into NH4Cl/H2O and extracted with ether. The combined organic extracts were washed with NaCl/ H₂O, dried over Na₂SO₄ and finally concentrated under reduced pressure. The product was subjected to flash column chromatography (SiO₂ 100 g), eluting with *n*-hexane/ethyl acetate 85:15 v/v to afford the product 1a (1.205 g, 3.64 mmol, 82%): yellow solid; mp 56-57 °C; HRMS (ESI) m/z Calcd for $C_{17}H_{16}BrO_2$ [M + H]⁺ 331.0328, found 331.0342; IR (KBr) 2240, 1604, 1257, 1029, 831 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.39–7.38 (m, 3H), 7.09–7.06 (m, 2H), 6.84 (d, J = 8.0 Hz, 2H), 4.97 (s, 2H), 3.83 (s, 3H), 2.31 (s, 3H); ¹³C NMR (CDCl₃) δ 159.9, 152.2, 133.9, 133.3, 132.5, 128.8, 114.6, 114.3, 113.9, 112.3, 87.6, 82.3, 58.1, 55.3, 20.2. Anal. Calcd for C17H15BrO2: C, 61.65; H, 4.56; Br, 24.13. Found: C, 61.58; H, 4.57; Br, 24.19.

1-(4-(3-(2-Bromo-4-methylphenoxy)prop-1-ynyl)phenyl)ethanone (**1b**). (1.218 g, 80%): yellow solid; mp 60–61 °C; HRMS (ESI) *m/z* Calcd for C₁₈H₁₅BrO₂Na [M + Na]⁺ 365.0153, found 365.0144; IR (KBr) 2954, 2372, 1670, 1261, 1022, 796 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.41 (s, 1H), 7.11–7.03 (m, 2H), 4.99 (s, 2H), 2.60 (s, 3H), 2.30 (s, 3H); ¹³C NMR (CDCl₃) δ 197.2, 152.1, 136.7, 133.9, 132.9, 131.9, 128.8, 128.2, 127.0, 114.7, 112.4, 86.9, 86.7, 58.0, 26.6, 20.2. Anal. Calcd for C₁₈H₁₅BrO₂: C, 62.99; H, 4.41; Br, 23.28. Found: C, 62.90; H, 4.42; Br, 23.22.

2-Bromo-4-methyl-1-(3-phenylprop-2-ynyloxy)benzene) (1c). (1.002 g, 75%): white oil; HRMS (ESI) m/z Calcd for $C_{16}H_{13}BrONa$ [M + Na]⁺ 323.0047, found 323.0037; IR (KBr) 3033, 2921, 1600, 1442, 1230, 916, 730 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.46–7.44 (m, 3H), 7.41–7.28 (m, 3H), 7.12–7.07 (m, 2H), 4.99 (s, 2H), 2.31 (s, 3H); ¹³C NMR (CDCl₃) δ 152.2, 133.9, 132.6, 131.8, 128.8, 128.7, 128.3, 122.3, 114.8, 112.4, 87.6, 83.6, 58.1, 20,2. Anal. Calcd for $C_{16}H_{13}BrO: C$, 63.81; H, 4.35; Br, 26.53. Found: C, 63.75; H, 4.36; Br, 26.45.

3-Bromo-4-(3-(4-methoxyphenyl)prop-2-ynyloxy)biphenyl (1d). (0.870 g, 50%): white solid; mp 116–117 °C; HRMS (ESI) m/z Calcd for C₂₂H₁₇BrO₂Na [M + Na]⁺ 415.0310, found 415.0329; IR (KBr) 2240, 1604, 1278, 1029, 831, 754 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.83 (s, 1H), 7.57–7.24 (m, 9H), 6.85 (d, J = 8.4 Hz, 2H), 5.05 (s, 2H), 3.83 (s, 3H); ¹³C NMR (CDCl₃) δ 160.0, 153.7, 136.0, 133.4, 132.0, 128.9, 127.3, 126.9, 126.8, 113.9, 87.9, 82.0, 58.0, 55.3. Anal. Calcd for C₂₂H₁₇BrO₂: C, 67.19; H, 4.36; Br, 20.32. Found: C, 67.10; H, 4.37; Br, 20.25.

1-(4-(3-(3-Bromobiphenyl-4-yloxy)prop-1-ynyl)phenyl)ethanone (1e). (1.205 g; 67%): yellow solid; mp 125–126 °C; HRMS (ESI) m/zCalcd for C₂₃H₁₇BrO₂Na [M + Na]⁺ 427.0310, found 427.0311; IR (KBr) 2902, 2358, 1679, 1598, 1261, 838, 769 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.92 (d, J = 8.4 Hz, 2H), 7.84 (s, 1H), 7.57–7.53 (m, 5H), 7.47–7.43 (m, 2H), 7.38–7.36 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 5.08 (s, 2H), 2.61 (s, 3H); ¹³C NMR (CDCl₃) δ 197.2, 153.6, 139.3, 136.7, 136.3, 132.2, 131.9, 128.9, 128.7, 128.2, 127.4, 126.9, 126.8, 114.5, 112.9, 87.0, 86.6, 57.8, 26.6. Anal. Calcd for $C_{23}H_{17}BrO_2$: C, 68.16; H, 4.23; Br, 19.72. Found: C, 68.10; H, 4.24; Br, 19.65.

3-Bromo-4-(3-phenylprop-2-ynyloxy)biphenyl (1f). (0.970 g, 60%): yellow solid; mp 70–71 °C; HRMS (ESI) *m/z* Calcd for C₂₁H₁₅BrONa [M + Na]⁺ 385.0204, found 385.0215; IR (KBr) 1484, 1278, 754 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.84 (s, 1H), 7.57–7.43 (m, 6H), 7.38–7.25 (m, 6H), 5.07 (s, 2H); ¹³C NMR (CDCl₃) δ 153.7, 139.4, 136.1, 132.1, 131.8, 128.9, 128.8, 128.3, 127.3, 126.9, 126.8, 122.1, 114.6, 112.9, 87.0, 83.3, 57.9. Anal. Calcd for C₂₁H₁₅BrO: C, 69.44; H, 4.16; Br, 22.00. Found: C, 69.53; H, 4.17; Br, 22.05.

2-Bromo-4-fluoro-1-(3-(4-methoxyphenyl)prop-2-ynyloxy)benzene (**1g**). (0.818 g, 55%): yellow solid; mp 79–80 °C; HRMS (ESI) *m*/*z* Calcd for C₁₆H₁₂BrFO₂Na [M + Na]⁺ 356.9902, found 356.9918; IR (KBr) 2967, 2235, 1604, 1509, 1261, 836, 734, 603 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.39–7.33 (m, 3H), 7.16–7.13 (m, 1H), 7.06–6.98 (m, 1H), 6.87–6.84 (m, 2H), 4.97 (s, 2H), 3.83 (s, 3H); ¹³C NMR (CDCl₃) δ 160.0, 157.2 (d, $J_{C-F} = 243.0$ Hz), 150.9, 133.3, 121.1, 120.4 (d, $J_{C-F} = 25.6$ Hz), 115.5 (d, $J_{C-F} = 8.5$ Hz), 114.6 (d, $J_{C-F} = 22.5$ Hz), 114.0 (d, $J_{C-F} = 11.3$ Hz), 112.8 (d, $J_{C-F} = 10.0$ Hz), 87.9, 81.8, 58.7, 55.3. Anal. Calcd for C₁₆H₁₂BrFO₂: C, 57.34; H, 3.61; Br, 23.84. Found: C, 57.26; H, 3.62; Br, 23.79.

1-(4-(3-(2-Bromo-4-fluorophenoxy)prop-1-ynyl)phenyl)ethanone (1h). (1.233 g; 80%): yellow solid; mp 73–74 °C; HRMS (ESI) *m/z* Calcd for C₁₇H₁₂BrFO₂Na [M + Na]⁺ 368.9902, found 368.9900; IR (KBr) 1687, 1600, 1488, 1403, 1292, 732 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.36–7.38 (m, 1H), 7.14–7.02 (m, 2H), 5.00 (s, 2H), 2.61 (s, 3H); ¹³C NMR (CDCl₃) δ 197.2, 157.3 (d, *J*_{C-F} = 243.0 Hz), 150.8, 136.8, 131.9, 128.2, 126.8, 120.6 (d, *J*_{C-F} = 25.6 Hz), 115.7 (d, *J*_{C-F} = 8.5 Hz), 114.7 (d, *J*_{C-F} = 22.5 Hz), 113.1 (d, *J*_{C-F} = 8.7 Hz), 87.1, 86.4, 58.5, 26.6. Anal. Calcd for C₁₇H₁₂BrFO₂: C, 58.81; H, 3.48; Br, 23.02. Found: C, 58.73; H, 3.49; Br, 23.07.

2-Bromo-4-fluoro-1-(3-phenylprop-2-ynyloxy)benzene (1i). (0.678 g, 50%): white oil; HRMS (ESI) m/z Calcd for $C_{15}H_{10}BrFONa$ [M + Na]⁺ 326.9797, found 326.9810; IR (KBr) 2240, 1450, 1384, 873 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.45–7.43 (m, 2H), 7.53–7.51 (m, 1H), 7.36–7.32 (m, 4H), 7.12–7.15 (m, 1H), 7.06–7.02 (m, 1H), 4.99 (s, 2H); ¹³C NMR (CDCl₃) δ 157.2 (d, J_{C-F} = 243.0 Hz), 150.9, 131.8, 128.8, 128.3, 122.0, 120.5 (d, J_{C-F} = 25.6 Hz), 115.6 (d, J_{C-F} = 8.5 Hz), 114.6 (d, J_{C-F} = 22.5 Hz), 113.0 (d, J_{C-F} = 9.6 Hz), 87.9, 83.2, 58.6. Anal. Calcd for $C_{15}H_{10}BrFO$: C, 59.04; H, 3.30; Br, 26.19. Found: C, 59.12; H, 3.31; Br, 26.26.

General Procedure for the Palladium-Catalyzed Cross-Coupling of 2-Bromo-O-aryl-prop-2-ynyl)phenols with Aryl-boronic Acids. Synthesis of (Z)-3-((4-Methoxyphenyl)(phenyl)methylene)-5-methyl-2,3-dihydrobenzofuran (3a). A solution of 2bromo-1-(3-(4-methoxyphenyl)prop-2-ynyloxy)-4-methylbenzene (1a) (0.1 g, 0.30 mmol, 1 equiv), PdCl₂(PPh₃)₂ (0.004 g, 0.006 mmol, 0.02 equiv) and K₃PO₄ (0.191 g, 0.90 mmol, 3 equiv) in 1,4-dioxane (2 mL) was treated with phenylboronic acid (2a) (0.055 g, 0.45 mmol, 1.5 equiv). The resulting solution was stirred at 100 °C for 2 h until determined to be complete by TLC. The crude reaction mixture was extracted with ether/H2O. The combined organic extracts were washed with NaCl/H2O, dried over Na2SO4 and finally concentrated under reduced pressure. The crude was subjected to flash column chromatography (SiO₂ 50 g), eluting with *n*-hexane/ethyl acetate 90:10 v/v to afford the product 3a (0.076 g, 0.23 mmol, 77%): yellow solid; mp 100–101 °C; HRMS (ESI) m/z Calcd for $C_{23}H_{21}O_2$ [M + H]+ 329.1536, found 329.1550; IR (KBr) 1606, 1251, 1155, 754 $^{-1});\,^{1}\text{H}$ NMR (CDCl₃) δ 7.45–7.39 (m, 3H), 7.31–7.28 (m, 2H), (cm⁻ 7.13 (d, J = 8.4 Hz, 2H), 6.91–6.88 (m, 3H), 6.73 (d, J = 8.4 Hz, 2H), 6.06 (s, 1H), 5.30 (s, 2H), 3.83 (s, 3H), 2.03 (s, 3H); ¹³C NMR (CDCl₃) δ 162.3, 159.1, 142.6, 134.0, 133.7, 132.1, 130.8, 130.5, 129.2, 128.5, 128.2, 127.2, 125.9, 124.7, 114.3, 109.9, 75.7, 55.4, 21.0. Anal. Calcd for C22H20O2: C, 84.12; H, 6.14. Found: C, 84.20; H, 6.15.

3-(Bis(4-methoxyphenyl)methylene)-5-methyl-2,3-dihydrobenzofuran (**3b**). (0.080 g; 74%): yellow solid; mp 149–150 °C; HRMS (ESI) *m*/*z* Calcd for C₂₄H₂₃O₃ [M + H]⁺ 359.1642, found 359.1637; IR (KBr) 1604, 1508, 1240, 833 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.98–6.88 (m, 5H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.26 (s, 1H), 5.28 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃) δ 162.0, 159.0, 158.6, 135.0, 133.9, 132.9, 131.8, 130.8, 130.1, 129.5, 129.1, 126.1, 124.6, 114.2, 113.7, 109.7, 75.8, 55.4, 55.3, 20.9. Anal. Calcd for $C_{24}H_{22}O_3$: C, 80.42; H, 6.19. Found: C, 80.50; H, 6.20.

(*Z*)-*Methyl* 4-((4-*methoxyphenyl*)(5-*methylbenzofuran*-3(2*H*)ylidene)*methyl*)*benzoate* (**3c**). (0.064 g, 55%): white solid; mp 167–168 °C; HRMS (ESI) *m*/*z* Calcd for $C_{25}H_{23}O_4$ [M + H]⁺ 387.1591, found 387.1580; IR (KBr) 1718, 1604, 1276, 823 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.99–6.88 (m, 3H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.19 (s, 1H), 5.28 (s, 2H), 3.98 (s, 3H), 3.84 (s, 3H), 2.05 (s, 3H); ¹³C NMR (CDCl₃) δ 166.9, 162.4, 158.8, 146.5, 134.1, 134.0, 130.8, 130.7, 130.2, 129.8, 129.5, 129.4, 129.1, 125.3, 124.4, 113.9, 109.9, 75.8, 55.3, 52.2, 20.9. Anal. Calcd for $C_{25}H_{22}O_4$: C, 77.70; H, 5.74. Found: C, 77.62; H, 5.75.

(E)-Methyl 3-((4-methoxyphenyl)(5-methylbenzofuran-3(2H)ylidene)methyl)benzoate (**3d**). (0.081 g, 70%): yellow solid; mp 162–163 °C; HRMS (ESI) *m*/*z* Calcd for $C_{25}H_{23}O_4$ [M + H]⁺ 387.1591, found 387.1579; IR (KBr) 1718, 1604, 1508, 1276, 823, 744 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.11 (d, *J* = 7.2 Hz, 1H), 8.00 (s, 1H), 7.57–7.51 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.93–6.89 (m, 3H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.06 (s, 1H), 5.31 (s, 2H), 3.93 (s, 3H), 3.84 (s, 3H), 2.03 (s, 3H); ¹³C NMR (CDCl₃) δ 166.9, 162.2, 158.8, 141.9, 134.4, 134.1, 134.0, 130.9, 130.8, 130.7, 130.5, 129.5, 129.3, 129.0, 128.7, 125.5, 124.4, 113.9, 109.9, 75.7, 55.3, 52.1, 20.9. Anal. Calcd for $C_{25}H_{22}O_4$: C, 77.70; H, 5.74. Found: C, 77.62; H, 5.75.

(E)-3-((4-Methoxyphenyl)(5-methylbenzofuran-3(2H)-ylidene)methyl)benzaldehyde (**3e**). (0.048 g, 45%): yellow solid; mp 125– 126 °C; HRMS (ESI) *m*/*z* Calcd for $C_{24}H_{21}O_3$ [M + H]⁺ 357.1485, found 357.1484; IR (KBr) 1698, 1508, 1251, 1008, 835, 690 (cm⁻¹); ¹H NMR (CDCl₃) δ 10.04 (s, 1H), 6.94 (d, *J* = 6.8 Hz, 1H), 7.83 (s, 1H), 7.80–7.50 (m, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.00–6.76 (m, 4H), 6.32 (d, *J* = 8.0 Hz, 1H), 6.05 (s, 1H), 5.31 (s, 2H), 3.84 (s, 3H), 2.09 (s, 3H); ¹³C NMR (CDCl₃) δ 192.1, 162.3, 158.9, 142.6, 137.2, 136.0, 134.4, 133.9, 131.5, 130.7, 130.3, 129.6, 129.5, 129.3, 128.3, 125.3, 124.2, 114.5, 114.0, 110.1, 75.7, 55.3, 20.9. Anal. Calcd for $C_{24}H_{20}O_3$: C, 80.88; H, 5.66. Found: C, 80.80; H, 5.67.

(Z)-1-(4-((5-Methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)phenyl)ethanone (**3f**). (0.085 g, 83%): yellow solid; mp 175–176 °C; HRMS (ESI) *m*/*z* Calcd for $C_{24}H_{21}O_2$ [M + H]⁺ 341.1536, found 341.1528; IR (KBr) 1673, 1600, 1481, 1268, 987, 719 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.48–7.46 (m, 3H), 7.33– 7.21 (m, 4H), 6.96 (d, *J* = 6.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.10 (s, 1H), 5.31 (s, 2H), 2.61 (s, 3H), 2.06 (s, 3H); ¹³C NMR (CDCl₃) δ 197.4, 162.5, 146.7, 140.7, 136.2, 135.6, 131.2, 131.1, 129.6, 129.4, 129.2, 128.6, 128.3, 127.9, 125.3, 125.1, 110.0, 75.4, 26.6, 20.9. Anal. Calcd for $C_{24}H_{20}O_2$: C, 84.68; H, 5.92. Found: C, 84.60; H, 5.91.

(E)-1-(4-((4-Methoxyphenyl)(5-methylbenzofuran-3(2H)-ylidene)methyl)phenyl)ethanone (**3g**). (0.097 g, 88%): brown solid; mp 150–151 °C; HRMS (ESI) *m*/*z* Calcd for $C_{25}H_{23}O_3$ [M + H]⁺ 371.1642, found 371.1631; IR (KBr) 1677, 1509, 1243, 815 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.00–6.95 (m, 3H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.29 (s, 1H), 5.27 (s, 2H), 3.89 (s, 3H), 2.62 (s, 3H), 2.09 (s, 3H); ¹³C NMR (CDCl₃) δ 197.5, 162.5, 159.4, 147.2, 135.9, 135.5, 132.9, 131.1, 130.8, 130.0, 129.4, 128.6, 128.4, 125.5, 124.9, 114.5, 110.0, 75.5, 55.4, 26.6, 21.0. Anal. Calcd for $C_{25}H_{22}O_3$: C, 81.06; H, 5.99. Found: C, 81.14: H, 5.98.

(E)-Methyl-4-((4-acetylphenyl)(5-methylbenzofuran-3(2H)ylidene)methyl)benzoate (**3h**). (0.096 g, 80%): yellow solid; mp 156–157 °C; HRMS (ESI) *m*/*z* Calcd for $C_{26}H_{23}O_4$ [M + H]⁺ 399.1591, found 399.1587; IR (KBr) 1722, 1681, 727 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.21 (s, 1H), 5.28 (s, 2H), 3.99 (s, 3H), 2.61 (s, 3H), 2.05 (s, 3H); ¹³C NMR (CDCl₃) δ 197.3, 166.8, 162.8, 146.2, 145.5, 136.9, 135.9, 131.7, 130.4, 129.8, 129.7, 129.5, 128.7, 128.4, 128.3, 124.74, 124.69, 110.3, 75.5, 52.2, 26.5, 20.9. Anal. Calcd for $C_{26}H_{22}O_4$: C, 78.37; H, 5.57. Found: C, 78.45; H, 5.58. (E)-Methyl-3-((4-acetylphenyl)(5-methylbenzofuran-3(2H)ylidene)methyl)benzoate (**3i**). (0.099 g, 83%): yellow solid; mp 150– 151 °C; HRMS (ESI) m/z Calcd for $C_{26}H_{23}O_4$ [M + H]⁺ 399.1591, found 399.1578; IR (KBr) 1720, 1685, 725, 619 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.13 (s, 1H), 7.99–7.94 (m, 3H), 7.55 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 6.95 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.06 (s, 1H), 5.29 (s, 2H), 3.99 (s, 3H), 2.60 (s, 3H), 2.02 (s, 3H); ¹³C NMR (CDCl₃) δ 197.4, 166.8, 162.7, 146.2, 141.0, 137.0, 135.7, 134.4, 131.5, 131.2, 130.8, 129.8, 129.5, 129.2, 129.0, 124.9, 124.8, 110.2, 75.4, 52.2, 26.5, 20.9. Anal. Calcd for $C_{26}H_{22}O_4$: C, 78.37; H, 5.57. Found: C, 78.46; H, 5.58.

(E)-3-((4-Acetylphenyl)(5-methylbenzofuran-3(2H)-ylidene)methyl)benzaldehyde (**3j**). (0.080 g, 72%): yellow solid; mp 128–130 °C. HRMS (ESI) *m*/z Calcd for $C_{25}H_{20}O_3$ Na [M + Na]⁺ 391.1305, found 391.1302; IR (KBr) 2358, 1677,1481, 1265, 811 (cm⁻¹); ¹H NMR (CDCl₃) δ 10.01 (s, 1H), 7.97–7.95 (m, 3H), 7.84 (d, *J* = 13.6 Hz, 1H), 7.64 (s, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.06 (s, 1H), 5.29 (s, 2H), 2.62 (s, 3H), 2.01 (s, 3H); ¹³C NMR (CDCl₃) δ 197.5, 192.1, 162.7, 146.1, 141.7, 137.3, 137.2, 136.0, 135.8, 131.8, 131.3, 129.9, 129.6, 129.3, 129.0, 128.8, 128.4, 124.8, 124.6, 110.4, 75.5, 26.6, 20.9. Anal. Calcd for $C_{25}H_{20}O_3$: C, 81.50; H, 5.47. Found: C, 81.59; H, 5.48.

3-(Diphenylmethylene)-5-methyl-2,3-dihydrobenzofuran (**3k**). (0.089 g, 99%): yellow wax; HRMS (ESI) m/z Calcd for $C_{22}H_{19}O$ [M + H]⁺ 299.1436, found 299.1441; IR (KBr) 1590,1481, 1220, 813 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.52–7.13 (m, 10H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.19 (s, 1H), 5.36 (s, 2H), 2.11 (s, 3H); ¹³C NMR (CDCl₃) δ 162.3, 142.1, 141.4, 134.4, 132.4, 131.9, 130.6, 129.0, 128.8, 128.5, 128.2, 127.6, 127.2, 126.7, 124.9, 109.9, 75.7, 20.9. Anal. Calcd for $C_{22}H_{18}O$: C, 88.56; H, 6.08. Found: C, 88.64; H, 6.07.

(E)-3-((4-Methoxyphenyl)(phenyl)methylene)-5-methyl-2,3-dihydrobenzofuran (**3**). (0.081 g, 82%): yellow solid; mp 103–104 °C; HRMS (ESI) m/z Calcd for $C_{23}H_{21}O_2$ [M + H]⁺ 329.1542, found 329.1545; IR (KBr) 1606, 1482, 1288, 981 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.44–7.42 (m, 3H), 7.32–7.29 (m, 2H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.90–6.87 (m, 3H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.06 (s, 1H), 5.31 (s, 2H), 3.84 (s, 3H), 2.04 (s, 3H); ¹³C NMR (CDCl₃) δ 162.3, 159.1, 142.6, 134.0, 133.7, 132.1, 130.8, 130.5, 129.2, 128.5, 128.2, 127.2, 125.9, 124.7, 114.3, 109.9, 75.7, 55.4, 21.0. Anal. Calcd for $C_{23}H_{20}O_2$: C, 84.12; H, 6.14. Found: C, 84.21; H, 6.15.

(E)-Methyl 3-((5-methylbenzofuran-3(2H)-ylidene)(phenyl)methyl)benzoate (**3m**). (0.056 g, 52%): yellow solid; mp 132–133 °C; HRMS (ESI) *m*/z Calcd for C₂₄H₂₀O₃Na [M + Na]⁺ 379.1310, found 379.1326; IR (KBr) 1722, 1482, 1284, 983 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.12 (d, *J* = 6.0 Hz, 1H), 8.03 (s, 1H), 7.59–7.52 (m, 7H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.09 (s, 1H), 5.30 (s, 2H), 3.93 (s, 3H), 2.04 (s, 3H); ¹³C NMR (CDCl₃) δ 166.9, 162.4, 141.7, 141.6, 135.2, 134.3, 131.0, 130.9, 130.8, 129.4, 129.0, 128.8, 128.6, 128.2, 127.4, 125.2, 124.6, 110.0, 75.6, 52.2, 20.9. Anal. Calcd for C₂₄H₂₀O₃: C, 80.88; H, 5.66. Found: C, 80.80; H, 5.67.

(E)-Methyl 4-((5-fluorobenzofuran-3(2H)-ylidene)(phenyl)methyl)benzoate (**3n**). (0.088 g, 81%): yellow solid; mp 116–117 °C; HRMS (ESI) *m*/z Calcd for C₂₃H₁₇FO₃Na [M + Na]⁺ 383.1059, found 383.1052; IR (KBr) 1714, 1477, 1272, 817 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.48–7.46 (m, 3H), 7.32–7.28 (m, 4H), 6.84–6.76 (m, 2H), 5.97–5.95 (m, 1H), 5.34 (s, 2H), 2.62 (s, 3H); ¹³C NMR (CDCl₃) δ 166.7, 160.4, 156.9 (d, *J*_{C-F} = 235.0 Hz), 145.4, 141.0, 134.3 (d, *J*_{C-F} = 9.3 Hz), 132.7, 130.5, 129.6, 129.5, 128.7, 128.1, 127.8, 126.2 (d, *J*_{C-F} = 9.3 Hz), 116.8 (d, *J*_{C-F} = 25.0 Hz), 110.7 (d, *J*_{C-F} = 12.5 Hz), 110.6 (d, *J*_{C-F} = 22.5 Hz), 76.2, 52.2. Anal. Calcd for C₂₃H₁₇FO₃: C, 76.65; H, 4.75. Found: C, 76.73; H, 4.76.

(E)-Methyl 3-((5-fluorobenzofuran-3(2H)-ylidene)(phenyl)methyl)benzoate (**3o**). (0.093 g, 86%): white solid; mp 117–118 °C; HRMS (ESI) *m*/z Calcd for C₂₃H₁₇FO₃Na [M + Na]⁺ 383.1059, found 383.1070; IR (KBr) 1718, 1432, 1259, 754 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.11–8.00 (m, 2H), 7.53–7.19 (m, 7H), 6.81–6.77 (m, 2H), 5.92 (d, *J* = 8.4 Hz, 1H), 5.32 (s, 2H), 3.91 (s, 3H); ¹³C NMR (CDCl₃) δ 166.7, 160.3, 156.9 (d, *J*_{C-F} = 237.3 Hz), 141.0 (d, *J*_{C-F} = 15.1 Hz), 134.4, 134.0, 132.7, 131.8, 131.3, 130.5, 129.4, 129.1, 128.7,

The Journal of Organic Chemistry

128.1, 127.7, 126.4 (d, $J_{C-F} = 9.1$ Hz), 116.7 (d, $J_{C-F} = 25.6$ Hz), 110.7 (d, $J_{C-F} = 11.8$ Hz), 110.6 (d, $J_{C-F} = 23.3$ Hz), 76.1, 52.2. Anal. Calcd for $C_{23}H_{17}FO_3$: C, 76.65; H, 4.75. Found: C, 76.72; H, 4.76.

(E)-5-Fluoro-3-((4-methoxyphenyl)(phenyl)methylene)-2,3-dihydrobenzofuran (**3p**). (0.084 g, 85%): yellow wax; HRMS (ESI) m/zCalcd for C₂₂H₁₇FO₂Na [M + Na]⁺ 355.1110, found 355.1098; IR (KBr) 1604, 1475, 1247, 779 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.48–7.44 (m, 3H), 7.32–7.30 (m, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.92–6.90 (m, 2H), 6.80–6.76 (m, 2H), 5.94 (d, J = 7.6 Hz, 1H), 5.38 (s, 2H), 3.85 (s, 3H); ¹³C NMR (CDCl₃) δ 159.9, 158.9, 156.9 (d, J_{C-F} = 235.9 Hz), 140.9, 134.9, 133.7, 132.4, 129.4, 129.3, 129.2, 127.9, 127.1 (d, J_{C-F} = 10.3 Hz), 115.9 (d, J_{C-F} = 25.1 Hz), 113.9 (d, J_{C-F} = 10.3 Hz), 110.8 (d, J_{C-F} = 26.3 Hz), 110.2 (d, J_{C-F} = 8.7 Hz), 76.3, 55.3. Anal. Calcd for C₂₂H₁₇FO₂: C, 79.50; H, 5.16. Found: C, 79.59; H, 5.15.

(E)-Methyl 4-((4-acetylphenyl)(5-fluorobenzofuran-3(3H)ylidene)methyl)benzoate (**3q**). (0.099 g; 82%): brown solid; mp 135–137 °C; HRMS (ESI) *m/z* Calcd for $C_{25}H_{19}FO_4Na$ [M + Na]⁺ 425.1165, found 425.1151; IR (KBr) 1729, 1479, 1274, 813 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.86–6.76 (m, 2H), 6.01 (d, *J* = 8.8 Hz, 1H), 5.31 (s, 2H), 3.94 (s, 3H), 2.61 (s, 3H); ¹³C NMR (CDCl₃) δ 197.4, 166.7, 160.6, 156.9 (d, *J*_{C-F} = 237.7 Hz), 145.6, 144.7, 136.1 (d, *J*_{C-F} = 3.0 Hz), 131.4, 130.6, 129.4, 129.6, 129.1, 128.8, 128.3, 125.8 (d, *J*_{C-F} = 10.0 Hz), 117.5 (d, *J*_{C-F} = 25.4 Hz), 110.9 (d, *J*_{C-F} = 10.0 Hz), 110.8 (d, *J*_{C-F} = 26.4 Hz), 76.0, 52.3, 26.6. Anal. Calcd for $C_{25}H_{19}FO_4$: C, 74.62; H, 4.76. Found: C, 74.70; H, 4.75.

(Z)-1-(4-((5-Fluorobenzofuran-3(2H)-ylidene)(phenyl)methyl)phenyl)ethanone (**3r**). (0.093 g, 90%): yellow solid; mp 153–155 °C; HRMS (ESI) *m*/*z* Calcd for C₂₃H₁₇FO₂Na [M + Na]⁺ 367.1110, found 367.1098; IR (KBr) 1681, 1484, 1267, 715 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.48–7.46 (m, 3H), 7.32–7.29 (m, 4H), 6.84–6.77 (m, 2H), 5.95 (dd, *J*₁= 9.6 Hz, *J*₂= 2.4 Hz, 1H), 5.34 (s, 2H), 2.62 (s, 3H); ¹³C NMR (CDCl₃) δ 197.3, 160.4, 156.9 (d, *J*_{C-F} = 236.4 Hz), 146.2, 140.0, 135.9, 135.3 (d, *J*_{C-F} = 3.6 Hz), 132.7, 129.4, 129.3, 128.6, 128.3, 128.2, 126.5 (d, *J*_{C-F} = 9.1 Hz), 116.9 (d, *J*_{C-F} = 25.0 Hz), 111.0 (d, *J*_{C-F} = 26.1 Hz), 110.6 (d, *J*_{C-F} = 8.5 Hz), 76.0, 26.6. Anal. Calcd for C₂₃H₁₇FO₂: C, 80.22; H, 4.98. Found: C, 80.31; H, 4.99.

(*Z*)-Methyl 4-((5-fluorobenzofuran-3(2H)-ylidene)(4methoxyphenyl)methyl)benzoate (**3s**). (0.090 g, 76%): yellow solid; mp 129–130 °C; HRMS (ESI) *m*/*z* Calcd for C₂₄H₂₀FO₄ [M + H]⁺ 391.1340, found 391.1343; IR (KBr) 1710, 1604, 1247, 823 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.12 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.90–6.74 (m, 4H), 5.99 (dd, *J*₁= 9.6 Hz, *J*₂= 2.4 Hz, 1H), 5.33 (s, 2H), 3.93 (s, 3H), 3.83 (s, 3H); ¹³C NMR (CDCl₃) δ 166.8, 160.2, 159.0, 156.9 (d, *J*_{C-F} = 235.9 Hz), 145.7, 133.2 (d, *J*_{C-F} = 2.5 Hz), 132.5, 130.4, 130.2, 129.6, 129.4, 127.2, 126.5 (d, *J*_{C-F} = 9.0 Hz), 116.4 (d, *J*_{C-F} = 25.0 Hz), 114.0, 110.6 (d, *J*_{C-F} = 15.0 Hz), 110.5 (d, *J*_{C-F} = 20.1 Hz), 76.3, 55.3, 52.2. Anal. Calcd for C₂₄H₁₉FO₄: C, 73.84; H, 4.91. Found: C, 73.90; H, 4.90.

(Z)-5-Fluoro-3-((4-methoxyphenyl)(phenyl)methylene)-2,3-dihydrobenzofuran (**3t**). (0.079 g, 79%): yellow wax; HRMS (ESI) m/z Calcd for C₂₂H₁₇FO₂Na [M + Na]⁺ 355.1110, found 355.1108; IR (KBr) 1631, 1457, 1247, 823 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.40–7.22 (m, 6H), 7.02–7.00 (m, 3H), 6.83–6.78 (m, 2H), 6.20 (d, J = 8.4 Hz, 1H), 5.33 (s, 2H), 3.91 (s, 3H); ¹³C NMR (CDCl₃) δ 160.2, 159.3, 156.9 (d, $J_{C-F} = 235.7$ Hz), 142.1, 133.8, 132.9, 130.5, 128.6, 128.1, 127.5, 127.3 (d, $J_{C-F} = 8.4$ Hz), 116.2 (d, $J_{C-F} = 24.8$ Hz), 114.5, 114.0 (d, $J_{C-F} = 7.9$ Hz), 110.8 (d, $J_{C-F} = 26.3$ Hz), 110.4 (d, $J_{C-F} = 8.8$ Hz), 76.3, 55.3. Anal. Calcd for C₂₂H₁₇FO₂: C, 79.50; H, 5.16. Found: C, 79.59; H, 5.17.

(*Z*)-1-(4-(*Phenyl*(5-*phenyl*)*benzofuran-3*(2*H*)-*ylidene*)*methyl*)*phenyl*)*ethanone* (**3***u*). (0.076 g; 55%): brown solid; mp 174–175 °C; HRMS (ESI) *m*/*z* Calcd for C₂₉H₂₃O₂ [M + H]⁺ 403.1698, found 403.1687; IR (KBr) 1644, 1457, 1261, 981 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.61–7.56 (m, 2H), 7.52–7.12 (m, 14H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.54 (s, 1H), 5.41 (s, 2H), 2.63 (s, 3H); ¹³C NMR (CDCl₃) δ 197.4, 164.0, 146.3, 140.7, 135.9, 135.7, 133.4, 131.9, 130.0, 129.6, 129.44, 129.41, 129.2, 128.6, 128.3, 128.0, 126.6, 126.4, 126.1, 123.4, 110.6, 75.8, 26.6. Anal. Calcd for $C_{29}H_{22}O_2$: C, 86.54; H, 5.51. Found: C, 86.60; H, 5.52.

(E)-Methyl 4-((4-acetylphenyl)(5-phenylbenzofuran-3(2H)ylidene)methyl)benzoate (**3v**). (0.076 g; 55%): brown solid; mp 130–132 °C; HRMS (ESI) m/z Calcd for $C_{31}H_{25}O_4$ [M + H]⁺ 461.1753, found 461.1775; IR (KBr) 1710, 1604, 1261, 757 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.20–7.98 (m, 4H), 7.48–6.95 (m, 11H), 6.51 (s, 1H), 5.38 (s, 2H), 4.00 (s, 3H), 2.63 (s, 3H); ¹³C NMR (CDCl₃) δ 197.5, 166.7, 164.2, 153.3, 145.7, 145.5, 140.5, 136.7, 135.9, 133.7, 130.7, 129.9, 129.8, 128.8, 128.8, 128.3, 126.8, 126.4, 125.534, 123.2, 129.3, 110.9, 75.8, 52.3, 26.6. Anal. Calcd for $C_{31}H_{24}O_4$: C, 80.85; H, 5.25. Found: C, 80.79; H, 5.26.

3-(Diphenylmethylene)-5-phenyl-2,3-dihydrobenzofuran (**3**w). (0.072 g, 67%): white solid; mp 160–161 °C; HRMS (ESI) m/z Calcd for C₂₇H₂₁O [M + H]⁺ 361.1587, found 361.1582; IR (KBr) 1656, 1471, 836 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.53–7.26 (m, 16H), 6.94 (d, J = 8.4 Hz, 1H), 6.47 (s, 1H), 5.41 (s, 2H); ¹³C NMR (CDCl₃) δ 163.8, 141.8, 141.3, 140.8, 133.9, 133.3, 133.2, 129.6, 129.2, 128.8, 128.6, 128.5, 128.1, 127.7, 127.3, 126.50, 126.48, 126.4, 123.2, 110.4, 75.9. Anal. Calcd for C₂₇H₂₀O: C, 89.97; H, 5.59. Found: C, 89.90; H, 5.58.

(*E*)-Methyl 4-(phenyl/5-phenylbenzofuran-3(2H)-ylidene)methyl)benzoate (**3x**). (0.080 g; 64%): yellow solid; mp 153–154 °C; HRMS (ESI) *m*/*z* Calcd for C₂₉H₂₃O₃ [M + H]⁺ 419.1647, found 419.1652; IR (KBr) 2358,1656, 1471, 863 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 2H), 7.52–7.25 (m, 13H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.58 (s, 1H), 5.40 (s, 2H), 4.02 (s, 3H); ¹³C NMR (CDCl₃) δ 166.8, 164.0, 146.2, 141.1, 140.7, 134.8, 133.5, 131.9, 130.5, 129.9, 129.5, 129.3, 128.7, 128.2, 127.7, 126.7, 126.5, 125.9, 123.0, 110.7, 76.0, 52.2. Anal. Calcd for C₂₉H₂₂O₃: C, 83.23; H, 5.30. Found: C, 83.30; H, 5.31.

(*Z*)-*Methyl* 4-((4-methoxyphenyl)(5-phenylbenzofuran-3(2H)ylidene)methyl)benzoate (**3y**). (0.071 g, 53%): white solid; mp 163–164 °C. HRMS (ESI) *m*/*z* Calcd for $C_{30}H_{25}O_4$ [M + H]⁺ 449.1753, found 449.1766; IR (KBr) 1710, 1471, 1286, 771 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.16 (s, 2H), 7.47–6.92 (m, 13H), 6.49 (s, 1H), 5.39 (s, 2H), 3.99 (s, 3H), 3.84 (s, 3H); ¹³C NMR (CDCl₃) δ 166.9, 163.8, 159.0, 146.4, 140.7, 133.6, 133.5, 131.7, 130.5, 130.3, 129.9, 129.5, 129.4, 129.0, 128.7, 126.6, 126.5, 126.2, 122.9, 114.0, 110.6, 76.1, 55.3, 52.2. Anal. Calcd for $C_{30}H_{24}O_4$: C, 80.34; H, 5.39. Found: C, 80.42; H, 5.40.

3-((4-Methoxyphenyl)(phenyl)methylene)-5-phenyl-2,3-dihydrobenzofuran (**3z**). (0.053 g, 45%): yellow solid; mp 158–159 °C; HRMS (ESI) *m*/*z* Calcd for $C_{28}H_{22}O_2Na$ [M + Na]⁺ 413.1517, found 413.1498; IR (KBr) 1590, 1261, 1035, 935 (cm⁻¹); ¹H NMR (CDCl₃) δ 6.52–6.94 (m, 16H), 6.53 (s, 1H), 5.44 (s, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃) δ 163.6, 158.8, 141.5, 140.9, 134.2, 133.2, 132.9, 132.7, 129.7, 129.5, 129.2, 128.6, 128.5, 127.657, 126.8, 126.5, 123.0, 113.9, 110.4, 76.1, 55.3. Anal. Calcd for $C_{28}H_{22}O_2$: C, 86.13; H, 5.68. Found: C, 86.20; H, 5.69.

(E)-3-((4-Fluoro-3-methylphenyl)(4-methoxyphenyl)methylene)-5-phenyl-2,3-dihydrobenzofuran (**5a**). (0.056 g, 44%): yellow solid; mp 140–141 °C; HRMS (ESI) *m*/*z* Calcd for C₂₉H₂₄FO₂ [M + H]⁺ 423.1755, found 423.1741; IR (KBr) 1631, 1484, 1247, 981 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.39–7.17 (m, 11H), 6.95–6.93 (m, 3H), 6.63 (s, 1H), 5.40 (s, 2H), 3.87 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃) δ 163.6, 161.0 (d, *J*_{C-F} = 246.2 Hz), 158.8, 140.9, 137.1, 134.2, 133.3, 132.9, 132.9, 132.72, 132.67, 132.0, 129.4, 128.7, 128.6, 126.4, 125.6 (d, *J*_{C-F} = 17.5 Hz), 123.0, 115.7 (d, *J*_{C-F} = 21.9 Hz), 114.7, 113.9, 110.4, 76.1, 55.3, 14.6. Anal. Calcd for C₂₉H₂₃FO₂: C, 82.44; H, 5.49. Found: C, 82.50; H, 5.50.

(E)-1-(4-((4-Fluoro-3-methylphenyl)(5-phenylbenzofuran3(2H)ylidene)methyl)phenyl)ethanone (**5b**). (0.078 g, 60%): yellow solid; mp 175–176 °C; HRMS (ESI) *m*/*z* Calcd for $C_{30}H_{24}FO_2$ [M + H]⁺ 435.1760, found 435.1758; IR (KBr) 1683, 1590, 1161, 744 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.43–7.13 (m, 11H), 6.93 (d, *J* = 9.6 Hz, 1H), 6.63 (s, 1H), 5.36 (s, 2H), 2.62 (s, 3H), 2.33 (s, 3H); ¹³C NMR (CDCl₃) δ 197.4, 164.0, 161.1 (d, *J*_{C-F} = 247.1 Hz), 146.4, 140.7, 136.2 (d, *J*_{C-F} = 3.8 Hz), 135.9 (d, *J*_{C-F} = 24.0 Hz), 135.8, 133.6, 132.6 (d, *J*_{C-F} = 5.1 Hz), 130.9, 129.73, 128.65, 128.3, 126.7, 126.4, 126.1, 125.95, 125.89, 123.3, 115.9 (d, *J*_{C-F} = 22.0 Hz),

The Journal of Organic Chemistry

110.7, 75.8, 26.6, 14.59, 14.55. Anal. Calcd for $C_{30}H_{23}FO_2$: C, 82.93; H, 5.34. Found: C, 82.85; H, 5.34.

(E)-3-((4-Fluoro-3-methylphenyl)(phenyl)methylene)-5-phenyl-2,3-dihydrobenzofuran (5c). (0.087 g, 74%): white solid; mp 157–158 °C. HRMS (ESI) m/z Calcd for $C_{28}H_{22}FO$ [M + H]⁺ 393.1655, found 393.1668; IR (KBr) 1631, 1484, 1247, 981 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.38–7.10 (m, 15H), 6.93 (d, J = 8.4 Hz, 1H), 6.65 (s, 1H), 5.37 (s, 2H), 2.34 (s, 3H); ¹³C NMR (CDCl₃) δ 163.8, 160.9 (d, $J_{C-F} = 245.8$ Hz), 141.8, 140.9, 136.8 (d, $J_{C-F} = 3.8$ Hz), 134.1, 133.4, 132.6 (d, $J_{C-F} = 4.9$ Hz), 132.2, 129.0, 128.71, 128.66, 128.59, 128.09, 127.4, 126.6, 126.4, 126.3, 125.7 (d, $J_{C-F} = 17.4$ Hz), 123.08, 115.7 (d, $J_{C-F} = 22.1$ Hz), 110.5, 76.0, 14.61 (d, $J_{C-F} = 3.0$ Hz). Anal. Calcd for $C_{28}H_{21}FO$: C, 85.69; H, 5.39. Found: C, 85.75; H, 5.40.

(*E*)-5-Fluoro-3-((4-fluoro-3-methylphenyl)(4-mthoxyphenyl)methylene)-2,3-dihydrobenzofuran (5d). (0.079 g, 72%): yellow solid; mp 146–147 °C; HRMS (ESI) *m/z* Calcd for $C_{23}H_{19}F_2O_2$ [M + H]⁺ 365.1353, found 365.1348; IR (KBr) 1594, 1477, 1251, 831 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.14–7.09 (m, 5H), 6.92–6.76 (m, 4H), 6.04 (d, *J* = 8.8 Hz, 1H), 5.34 (s, 2H), 3.85 (s, 3H), 2.32 (s, 3H); ¹³C NMR (CDCl₃) δ 160,9 (d, *J*_{C-F} = 246.0 Hz), 159.9, 158.9, 156.9 (d, *J*_{C-F} = 235.9 Hz), 136.5 (d, *J*_{C-F} = 3.7 Hz), 134.1, 132.9, 132.3 (d, *J*_{C-F} = 5.0 Hz), 129.4, 128.3 (d, *J*_{C-F} = 7.9 Hz), 127.1, 125.8 (d, *J*_{C-F} = 17.2 Hz), 116.0 (d, *J*_{C-F} = 25.1 Hz), 115.7 (d, *J*_{C-F} = 8.75 Hz), 76.3, 55.3, 14.6 (d, *J*_{C-F} = 2.8 Hz). Anal. Calcd for $C_{23}H_{18}F_2O_2$: C, 80.22; H, 4.98. Found: C, 80.30; H, 4.99.

(E)-1-(4-((4-Fluoro-3-methylphenyl)(5-fluorobenzofuran3(3H)ylidene)methyl)phenyl)ethanone (**5e**). (0.093 g, 82%): yellow wax; IR HRMS (ESI) *m*/*z* Calcd for C₂₄H₁₈F₂O₂ [M + Na]⁺ 399.1173, found 399.1192; (KBr) 1683, 1479, 1265, 821 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.95– 6.79 (m, SH), 6.07 (dd, *J*₁= 7.6 Hz, *J*₂= 2.8 Hz, 1H), 5.31 (s, 2H), 2.62 (s, 3H), 2.32 (s, 3H); ¹³C NMR (CDCl₃) δ 197.5, 161.1 (d, *J*_{C-F} = 246.1 Hz), 156.9 (d, *J*_{C-F} = 266.6 Hz), 146.2, 135.9, 135.6, 132.4 (d, *J*_{C-F} = 5.3 Hz), 131.9 (d, *J*_{C-F} = 3.9 Hz), 128.7, 128.4, 128.3, 128.2, 126.4 (d, *J*_{C-F} = 9.3 Hz), 126.2 (d, *J*_{C-F} = 17.6 Hz), 117.1 (d, *J*_{C-F} = 22.1 Hz), 115.9 (d, *J*_{C-F} = 22.6 Hz), 110.9 (d, *J*_{C-F} = 23.8 Hz), 110.8 (d, *J*_{C-F} = 6.3 Hz), 75.9, 26.6, 14.6 (d, *J*_{C-F} = 3.8 Hz). Anal. Calcd for C₂₄H₁₈F₂O₂: C, 76.58; H, 4.82. Found: C, 76.67; H, 4.83.

Synthesis of 1-(4-(1E,2E)-1-(5-Methylbenzofuran-3(2H)-ylidene)-3-phenylallyl)phenyl)ethanone (6). A solution of 1-(4-(3-(2-bromo-4-methylphenoxy)prop-1-ynyl)phenyl)ethanone (1a) (0.1 g, 0.29 mmol, 1 equiv), PdCl₂(PPh₃)₂ (0.004 g, 0.006 mmol, 0.02 equiv) and K₃PO₄ (0.184 g, 0.87 mmol, 3 equiv) in 1,4-dioxane (2 mL) was treated with potassium trans- β -styryltrifluoroborate (0.092 g, 0.44 mmol, 1.5 equiv). The resulting solution was stirred at 100 °C for 4 h until determined to be complete by TLC. The crude reaction mixture was extracted with ether/H2O. The combined organic extracts were washed with NaCl/H2O, dried over Na2SO4, and finally concentrated under reduced pressure. The product was subjected to flash column chromatography (SiO₂ 50 g), eluting with *n*-hexane/ethyl acetate 85:15 v/v to afford the product 6 (0.048 g, 0.13 mmol, 45%): yellow oil; HRMS (ESI) m/z Calcd for $C_{26}H_{23}O_2 [M + H]^+$ 367.1690, found 367.1690; IR (KBr) 2921, 2360, 1683, 1265, 956 (cm⁻¹); ¹H NMR $(CDCl_3) \delta 8.07 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 16.0 Hz, 1H), 7.60 (s, J = 16.0 Hz), 7.60 (s, J$ 1H), 7.43–7.09 (m, 7H), 7.01 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.14 (d, J = 16.0 Hz, 1H), 4.87 (s, 2H), 2.70 (s, 3H), 2.44 (s, 3H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 197.7, 163.5, 145.1, 137.4, 136.4, 132.5, 131.3, 130.5, 130.4, 129.5, 129.1, 128.8, 127.8, 126.8, 126.5, 126.4, 125.2, 110.4, 75.8, 26.6, 21.3. Anal. Calcd for C26H22O2: C, 85.22; H, 6.05. Found: C, 85.30; H, 6.06.

General Procedure for the Aromatization Reaction of 3-Methylene-2,3-dihydrobenzofurans 3. Synthesis of 3-((4-Methoxyphenyl)(phenyl)methyl)-5-methylbenzofuran (8a). To a solution of 3-((4-methoxyphenyl)(phenyl)methylene)-5-methyl-2,3dihydrobenzofuran (3a) (0.05 g, 0.15 mmol, 1 equiv) in DMF (1 mL) was added K_3PO_4 (0.318 g, 0.15 mmol, 1 equiv). The resulting solution was stirred at 100 °C for 7 h until determined to be complete by TLC. After cooling, the reaction mixture was dried under reduced pressure, and the residue was purified by flash column chromatography (SiO₂ 50 g), eluting with *n*-hexane/ethyl acetate 90:10 v/v to afford the product (0.036 g, 0.11 mmol, 73%) as a yellow solid: mp 115–116 °C; HRMS (ESI) *m*/z Calcd for C₂₃H₂₁O₂ [M + H]⁺ 329.1536, found 329.1527; IR (KBr) 1617, 1511, 1087, 1022, 796 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.37–7.28 (m, 6H), 7.24 (d, *J* = 6.8 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 1H), 6.97 (s, 1H), 6.94 (s, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.47 (s, 1H), 3.82 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃) δ 158.3, 154.3, 144.2, 142.7, 134.6, 131.8, 129.8, 128.8, 128.5, 127.7, 126.6, 125.6, 124.0, 120.4, 113.9, 110.9, 55.2, 46.8, 21.3. Anal. Calcd for C₂₃H₂₀O₂: C, 84.12; H, 6.14. Found: C, 84.20; H, 6.15.

Typical Procedure A for the Synthesis of 3,5-Disubstituted Benzo[b]furans (8). Synthesis of 3-((4-Methoxyphenyl)(phenyl)methyl)-5-methylbenzofuran (8a). A solution of 2-bromo-1-(3-(4methoxyphenyl)prop-2-ynyloxy)-4-methylbenzene (1a) (0.1 g, 0.30 mmol, 1 equiv), PdCl₂(PPh₃)₂ (0.004 g, 0.006 mmol, 0.02 equiv) and K₃PO₄ (0.191 g, 0.90 mmol, 3 equiv) in 1,4-dioxane (2 mL) was treated with phenylboronic acid 2a (0.055 g, 0.45 mmol, 1.5 equiv). The resulting solution was stirred at 100 °C for 2 h until determined to be complete by TLC. The crude reaction mixture was extracted with ether/H $_2$ O. The combined organic extracts were washed with NaCl/H2O, dried over Na2SO4, and finally concentrated under reduced pressure. The residue was dissolved in DMF (2 mL), and K_3PO_4 (0.631 g, 0.30 mmol, 1 equiv) was added. The resulting solution was stirred at 100 °C for 2 h until the reaction was determined to be complete by TLC. After cooling, the reaction mixture was dried under reduced pressure, and the residue was purified by flash column chromatography (SiO₂ 50 g), eluting with n-hexane/ ethyl acetate 90:10 v/v to afford the product 8a (0.064 g, 0.19 mmol, 65%).

Typical Procedure B for the Synthesis of 3,5-Disubstituted Benzo[b]furans (8). Synthesis of 3-((4-Methoxyphenyl)/phenyl)methyl)-5-methylbenzofuran (8a). A solution of 2-bromo-1-(3-(4methoxyphenyl)prop-2-ynyloxy)-4-methylbenzene (1a) (0.1 g, 0.30 mmol, 1 equiv), $PdCl_2(PPh_3)_2$ (0.004 g, 0.006 mmol, 0.02 equiv) and K_3PO_4 (0.318 g, 1.50 mmol, 5 equiv) in DMSO (2 mL) was treated with phenylboronic acid (2a) (0.055 g, 0.45 mmol, 1.5 equiv). The resulting solution was stirred at 100 °C for 9 h until the reaction was determined to be complete by TLC. The crude reaction mixture was extracted with ether/H₂O. The combined organic extracts were washed with NaCl/H₂O, dried over Na₂SO₄, and finally concentrated under reduced pressure, and the residue was purified by flash column chromatography (SiO₂ 50 g), eluting with *n*-hexane/ethyl acetate 90:10 v/v to afford the product 8a (0.050 g, 0.15 mmol, 51%).

3-Benzhydryl-5-methylbenzofuran (**8b**). (0.065 g, 73% [procedure **A**]; 0.046 g, 51% [procedure **B**]): yellow solid; mp 83–84 °C; HRMS (ESI) m/z Calcd for $C_{22}H_{19}O$ [M + H]⁺ 299.1430, found 299.1424; IR (KBr) 1631, 1286, 1087, 698 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.45–7.32 (m, 11H), 7.15 (d, J = 8.0 Hz, 1H), 7.06 (s, 1H), 7.02 (s, 1H), 5.59 (s, 1H), 2.40 (s, 3H); ¹³C NMR (CDCl₃) δ 154.3, 144.3, 142.4, 131.9, 128.8, 128.5, 127.7, 126.7, 125.6, 123.7, 120.4, 111.0, 47.6, 21.4. Anal. Calcd for $C_{22}H_{18}O$: C, 88.56; H, 6.08. Found: C, 88.65; H, 6.09.

1-(4-((5-Methylbenzofuran-3-yl)(phenyl)methyl)ethanone (**8***c*). (0.074 g, 72% [procedure **A**]): yellow solid; mp 90–91 °C; HRMS (ESI) *m*/*z* Calcd for C₂₄H₂₁O₂ [M + H]⁺ 341.1542, found 341.1555; IR (KBr) 1644, 1272, 1087, 703 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.41–6.95 (m, 9H), 7.01 (s, 1H), 6.95 (s, 1H) 6.00 (s, 1H), 2.62 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃) δ 197.8, 154.3, 147.9,144.2, 141.5, 135.8, 132.1, 129.1, 128.8, 128.7, 127.4, 127.1, 125.8, 122.9, 120.2, 111.1, 47.6, 26.6, 21.4. Anal. Calcd for C₂₄H₂₀O₂: C, 84.68; H, 5.92. Found: C, 84.60; H, 5.93.

Methyl 3-((4-methoxyphenyl)(5-methylbenzofuran-3-yl)methyl)benzoate (**8d**). (0.064 g, 55% [procedure A]; 0.035 g, 30% [procedure B]): yellow wax; HRMS (ESI) m/z Calcd for $C_{25}H_{23}O_4$ [M + H]⁺ 387.1596, found 387.1614; IR (KBr) 1722, 1604, 1284, 800 (cm⁻¹); ¹H NMR (CDCl₃) δ 8.00 (s, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.46–7.37 (m, 3H), 7.19–7.09 (m, 3H), 6.96 (s, 1H), 6.91 (s, 1H), 6.89–6.87 (m, 2H), 5.51 (s, 1H), 3.91 (s, 3H), 3.82 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃) δ 167.1, 158.5, 154.3, 144.2, 143.2, 133.8, 133.2, 131.9, 130.5, 129.9, 129.7, 128.6, 127.9, 127.5, 125.7, 123.6, 120.2, 114.0,

The Journal of Organic Chemistry

111.0, 55.2, 52.1, 46.7, 21.3. Anal. Calcd for $C_{25}H_{22}O_4\!\!:$ C, 77.70; H, 5.74. Found: C, 77.61; H, 5.75.

5-*Fluoro-3-((4-methoxyphenyl)(phenyl)methyl)benzofuran* (8*e*). (0.090 g, 90% [procedure A]): yellow oil; HRMS (ESI) *m/z* Calcd for C₂₂H₁₈FO₂ [M + H]⁺ C₂₂H₁₈FO₂Na [M + Na]⁺ 333.1291, found 333.1290; IR (KBr) 1610, 1469, 1249, 1099, 852 (cm⁻¹); ¹H NMR (CDCl₃) δ 7.43–6.79 (m, 13H), 5.46 (s, 1H), 3.81 (s, 3H); ¹³C NMR (CDCl₃) δ 158.6 (d, J_{C-F} = 237.0 Hz), 158.5, 152.1, 145.7, 142.2, 134.0, 129.8, 128.4, 128.6, 128.2, 126.8, 124.7 (d, J_{C-F} = 3.8 Hz), 114.0, 112.2 (d, J_{C-F} = 26.0 Hz), 112.0, 106.3 (d, J_{C-F} = 25.0 Hz), 55.3, 46.8. Anal. Calcd for C₂₂H₁₇FO₂: C, 79.50; H, 5.72. Found: C, 79.42; H, 5.73.

ASSOCIATED CONTENT

Supporting Information

Characterization for compounds, including copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: antonio.arcadi@univaq.it; giancarlo.fabrizi@uniroma1. it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Università dell'Aquila and from Sapienza, Università di Roma.

REFERENCES

(1) (a) Yang, Y.-F.; Shu, X.-Z.; Luo, J.-Y.; Ali, S.; Liang, Y.-M. Chem.—Eur. J. 2012, 18, 8600–8604. (b) Zhang, J.-W.; Xu, Z.; Gu, Q.; Shi, X.-X.; Leng, X.-B.; You, S.-Li. Tetrahedron 2012, 68, 5263– 5268. (c) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem., Int. Ed. 2012, 51, 7384–7395. (d) Suzuki, Y.; Oishi, S.; Takei, Y.; Yasue, M.; Misu, R.; Naoe, S.; Hou, Z.; Kure, T.; Isao Nakanishi, I.; Ohno, H.; Hirasawa, A.; Tsujimoto, G.; Fujii, N. Org. Biomol. Chem. 2012, 10, 4907–4915. (e) Burke, A. J.; Marinho, V. R.; Furtado, O. M. R. Curr. Org. Synth. 2010, 10, 4907–4915. (f) Zhou, J. Chem.—Asian J. 2010, 5, 422–434. (g) Chernyak, D.; Gevorgyan, V. Org. Lett. 2010, 12, 5558–5560. (h) Souza, D. M. D.; Müller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095–1108.

(2) Wender, P. A.; Miller, B. L. Nature 2009, 460, 197-201.

(3) (a) Tietze, L. F.; Hungerland, T.; Depken, C.; Maaβ, C.; Stalke, D. Synlett 2012, 2516–2520 and references cited therein. (b) Vlaar, T.; Ruijter, E.; Orrua, R. V. A. Adv. Synth. Catal. 2011, 353, 3151–3156.
(c) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570–1581. (d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–7186. (e) Pellisier, H. Tetrahedron 2006, 62, 2143–2173. (f) Pellisier, H. Tetrahedron 2006, 62, 1619–1665.

(4) Ma, S. Handbook of Cyclization Reactions; Wiley-VCH: Weinheim, 2010; Vol. 1.

(5) (a) Kan, S. B. J.; Anderson, E. A. Org. Lett. 2008, 11, 2323–2326.
(b) Bour, C.; Blond, G.; Salem, B.; Suffert, J. Tetrahedron 2006, 62, 10567–10581.

(6) For representative examples, see: (a) Nandakumar, A.; Perumal, P. T. Org. Lett. **2013**, 15, 382–385. (b) Greenaway, R. L.; Campbell, C. D.; Holton, O. T.; Russell, C. A.; Anderson, E. A. Chem.—Eur. J. **2011**, 17, 14366–14370. (c) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. J. Org. Chem. **2005**, 70, 6972–6975. (d) D'Souza, D. M.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. **2005**, 44, 153–168. (e) Couty, S.; Liégault, B.; Meyer, C.; Cossy, J. Org. Lett. **2004**, 6, 2511–2514. (f) Oh, C. H.; Lim, Y. M. Tetrahedron Lett. **2003**, 44, 267–270. (g) Grigg, R.; Sansano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. *Tetrahedron* **1997**, *53*, 11803–11826.

(7) (a) Richey, R. N.; Yu, H. Org. Process Res. Dev. 2009, 13, 315–320. (b) Yu, H.; Richey, R. N.; Carson, M. W.; Coghlan, M. J. Org. Lett. 2006, 8, 1685–1688.

(8) Charpenay, M.; Boudhar, A.; Siby, A.; Schigand, S.; Blond, G.; Suffert, J. Adv. Synth. Catal. 2011, 353, 3151–3156.

(9) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A.; Marinelli, F. Org. Biomol. Chem. 2013, 11, 545–548. (b) Arcadi, A.; Aschi, M.; Chiarini, M.; Ferrara, G.; Marinelli, F. Adv. Synth. Catal. 2010, 352, 493–498. (c) Arcadi, A.; Aschi, M.; Marinelli, F.; Verdecchia, M. Tetrahedron 2008, 64, 5364–5361. (d) Alfonsi, M.; Arcadi, A.; Chiarini, M.; Marinelli, F. J. Org. Chem. 2007, 72, 9510– 9517. (e) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia, M. Synlett 2006, 3218–3224.

(10) (a) Song, W.-J.; Yang, X.-D.; Zeng, X.-H.; Xu, X.-L.; Zhang, G.-L.; Zhang, H.-B. RSC Adv. 2012, 2, 4612–4615. (b) Lu, D.; Yang, L.; Li, Q.; Gao, X.; Wangn, F.; Zhang, G. Eur. J. Pharmacol. 2012, 691, 275–282. (c) Sidhu, P. S.; Liang, A.; Mehta, A. Y.; Abdel Aziz, M. H.; Zhou, Q.; Desai, U. R. J. Med. Chem. 2011, 54, 5522–5531. (d) Mitsui, C.; Soeda, J.; Miwa, K.; Tsuji, H.; Takeya, J.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 5448–5451. (e) Wang, T.; Li, Z.-Y.; Xie, A.-L.; Yao, X.-J.; Cao, X.-P.; Kuck, D. J. Org. Chem. 2011, 76, 3231–3238.

(11) Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Marinelli, F. Org. Biomol. Chem. 2012, 10, 9700–9708.

(12) (a) Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Marinelli, F. *Tetrahedron* **2013**, *69*, 1857–1871. (b) Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A. *Tetrahedron Lett.* **2011**, *52*, 5149–5152.

(13) The double bond configuration of 3c as model of compounds 3 was unambiguously assigned as Z by 1H NOESY spectroscopy using standard Bruker software, with a mixing time of 0.8 s. See the Supporting Information section for 2D spectra.

(14) Yao, M.-L.; Reddy, M. S.; Zeng, W.; Hall, K.; Walfish, I.; Kabalka, G. W. J. Org. Chem. 2009, 74, 1385-1387.

(15) Park, K. B.; Kitteringham, N. R.; O'Neill, P. M. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443–470.

(16) (a) Wang, W.-Y.; Sun, L. L.; Deng, C.-L.; Zhang, X.-G. Synthesis
2013, 118–126. (b) Troegel, B.; Lindel, T. Org. Lett. 2012, 14, 468–471. (c) Ye, S.; Liu, G.; Pu, S.; Wu, J. Org. Lett. 2012, 14, 70–73. (d) Awasaguchi, K.; Hayashi, H.; Kawai, H.; Tominaga, H.; Sato, Y.; Hayashi, K.; Todo, Y. Synlett 2012, 448–452.

(17) (a) Lu, G.-P.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. J. Org. Chem. 2012, 77, 3700–3703. (b) D'Souza, D. M.; Muschelkautz, C.; Rominger, F.; Müller, T. J. J. Org. Lett. 2010, 12, 3364–3367.
(c) Cheung, W. S.; Patch, R. J.; Player, M. R. J. Org. Chem. 2005, 70, 3741–3744. (d) Amatore, C.; Bensalem, S.; Ghalem, S.; Jutand, A. J. Organomet. Chem. 2004, 689, 4642–4646.

(18) Luo, F.-T.; Wang, R.-T. Heterocycles 1990, 31, 2181-2186.

(19) Girard, A.-L.; Lhermet, R.; Fressigné, C.; Durandetti, M.; Maddaluno, J. Eur. J. Org. Chem. 2012, 2895-2905.

(20) (a) Dahlén, A.; Petersson, A.; Hilmersson, G. Org. Biomol. Chem. 2003, 1, 2423–2426. (b) Grigg, R.; Savic, V.; Sridharan, V.; Terrier, C. Tetrahedron 2002, 58, 8613–8620. (c) Le Strat, F.; Maddaluno, J. Org. Lett. 2002, 4, 2791–2793. (d) Olivero, S.; Duñach, E. Eur. J. Org. Chem. 1999, 1885–1891. (e) Grigg, R.; Savic, V. Tetrahedron Lett. 1996, 37, 6565–6568. (f) Dyker, G. J. Org. Chem. 1993, 58, 6426–6428.

(21) (a) Parmar, N. J.; Patel, R. A.; Parmar, B. D.; Talpada, N. P. *Bioorg. Med. Chem. Lett.* **2013**, 23, 1656–1661. (b) Ambrogio, I.; Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. *Synlett* **2007**, 1775–1779.

(22) (a) Freemantle, M. An Introduction to Ionic Liquids; RSC Publishing: Cambridge, 2010. (b) Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123–150 and references cited therein.

(23) (a) Leibeling, M.; Pawliczek, M.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2012, 14, 346–349. (b) Sakiyama, N.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2012, 51, 5976–5980.